Бензин — повышение октанового числа

0
6776

Современные автомобильные бензины настолько сложны по своему углеводородному составу и наличию присадок различного функционального назначения, что качество товарных бензинов контролируется двадцатью показателями, в т.ч. октановое число бензина, результаты оценки которых фиксируют в паспорте качества на каждую партию бензина.

Если такие показатели качества, как индукционный период или водорастворимые кислоты и щелочи известны только специалистам, то, что такое октановое число (ОЧ) бензина, знают практически все. Этот показатель характеризует самое главное эксплуатационное свойство бензина — его детонационную стойкость(ДС), величина которой настолько важна, что обозначена в каждой марке бензина. Например, в основном отечественном стандарте на бензины (ГОСТ Р 51105-97) предусмотрена маркировка различных марок автобензина в соответствии с мировыми требованиями: «Нормаль-80», «Регуляр-92», «Премиум-95» и «Супер-98». Цифры в маркировке указывают на величину детонационной стойкости данной марки бензина в единицах ОЧ, определенных по исследовательскому методу (ОЧИ) на специальной стандартной одноцилиндровой моторной установке.

Почему такое повышенное внимание к октановому числу бензина и его значению? Очевидно, потому что величина ДС бензина прямым образом влияет на мощность бензинового двигателя и его топливную экономичность. Именно поэтому за почти столетний период развития бензинового двигателя ДС товарных бензинов увеличилась с 66 до 98 октановых единиц.

 

Высокого значения ДС бензина можно добиться технологическим путем — с помощью вторичных каталитических процессов переработки прямогонных бензиновых нефтяных фракций в высокооктановые бензиновые компоненты. При этом значительно возрастают расход нефти и стоимость производства бензина.

Можно добавлять в бензин высокооктановые спирты и эфиры, что требует больших капиталовложений на организацию многотоннажного промышленного производства этих синтетических компонентов.

Октановое число бензина Есть ли альтернатива?

Самый экономичный путь повышения детонационной стойкости бензина — это применение антидетонационных (АД) присадок, способных при концентрации в бензине сотых долей процента повысить его октановое число на 8 и более единиц. Производство автобензинов без использования АД присадок в 5-7 раз дороже по сравнению с производством, в котором такие присадки применяются.
Первой АД присадкой, получившей путевку в нефтеперерабатывающую промышленность, стала этиловая жидкость на основе высокотоксичного, но очень эффективного антидетонатора тетраэтилсвинца (ТЭС). С этого момента началась и до настоящего времени не прекращается своеобразная «гонка за лидером» в направлении разработки эффективных, экологически безопасных и рентабельных в производстве АД присадок.

Любопытна история создания свинцового антидетонатора, который на многие десятилетия стал основой промышленного производства бензинов. Впервые ТЭС был синтезирован в 1852 г. и долгое время рассматривался лишь как образец редкого химического металлоорганического соединения. В 1921 г. один инженер в Америке построил небольшую электростанцию с бензиновым двигателем. Но ее не застраховали по причине высокой пожарной опасности применяемого бензина. Была предпринята попытка заменить бензин керосином. Но при этом двигатель работал с большой детонацией (ОЧИ керосина всего 30 единиц) и мог в любую минуту выйти из строя. Чтобы не переделывать двигатель, приятели инженера Миджлей и Бойд в лаборатории фирмы «Дженерал Моторс» попробовали найти вещество, способное повысить ДС керосина и подавить детонацию в двигателе. Среди многих химических соединений исследователям попался ТЭС, который показал свою исключительную антидетонационную эффективность и сразу же был запатентован в качестве антидетонатора, конечно, не к керосину, а к автомобильному бензину, потребность в котором возрастала буквально с каждым днем. Еще одним свидетельством американской предприимчивости и деловитости стал факт сверхбыстрого строительства завода по производству ТЭС и этиловой жидкости на его основе, который заработал с февраля 1923 г. В продажу все в большем количестве стал поступать этилированный высокооктановый бензин под названием «этилбензин».

 

Запрет на Плюмбум

Высокоприбыльное производство эффективной, хотя и очень ядовитой, этиловой жидкости постоянно расширялось и к середине минувшего века достигло в мировом масштабе сотен тысяч тонн в год, причем добавлялась она к бензину в мизерных количествах — около 1 мл на 1л бензина.

А дальше, на первый взгляд, произошло невероятное. Америка, приложившая немалые усилия для мирового распространения ТЭС, включая жесточайшую борьбу против других антидетонаторов, одной из первых стала в 1970 г. ограничивать его применение в бензинах на своей территории, а в 1986 г. полностью запретила в стране производство и применение этилированных бензинов из-за возрастающего свинцового отравления окружающей среды продуктами сгорания ТЭС в автомобильных двигателях. Кроме того, ТЭС буквально за несколько часов прекращал работу каталитических нейтрализаторов отработавших газов (ОГ) бензиновых двигателей.

Получив колоссальный технический и экономический эффект от применения ТЭС, американское общество ужаснулось, оценив понесенные экологические потери. Только в одном 1975 г. в атмосферу Земли вместе с ОГ двигателей попало, по различным оценкам, от 150 до 260 тысяч тонн свинца, этого сильнейшего токсина, способного накапливаться в организме человека и снижать содержание в крови ее основного компонента — гемоглобина. Губительному воздействию свинца в первую очередь подвержены дети. Повышенная агрессивность, потеря интереса к развитию, умственная отсталость — типичные признаки отравления свинцом, которые стали все чаще фигурировать в медицинской статистике.

В нашей стране ТЭС и этиловые жидкости не применялись до 1942 г. Но, получив по ленд-лизу у союзников первые партии грузовиков Studebekker, а также американских и английских истребителей, нам пришлось срочно закупать этиловую жидкость. Дело в том, что степень сжатия иностранных карбюраторных двигателей была выше, чем у отечественных, и надо было этилировать отечественные бензины для повышения их ДС, что и было организовано не только на нефтеперерабатывающих заводах, но и на армейских складах горючего.

После войны постановлением правительства применение этилированных бензинов было запрещено в Москве, Ленинграде, столицах союзных республик и в курортных зонах. Но обеспечить выполнение этого постановления было крайне затруднительно из-за все возрастающего объема в стране междугородных автомобильных перевозок.

Выше уже отмечалось, что после «рождения» ТЭС постоянно проводились исследования с целью создания его не менее эффективной, но менее токсичной альтернативы. В результате была исследована АД эффективность тысяч соединений, содержащих в своем составе практически все элементы периодической системы Д.И. Менделеева. Но для организации промышленного производства наиболее эффективных антидетонаторов необходимо решить многочисленные задачи сырьевого, технологического и экономического характера, а также вопросы обеспечения требований надежной и долговечной эксплуатации двигателей на бензине с новыми АД присадками. В круг изучаемых проблем входили вопросы растворимости антидетонатора в бензине, его стабильности в нем в условиях транспортирования и хранения горючего, влияния антидетонатора на состав ОГ двигателя, количество отложений в камере сгорания, эффективность работы нейтрализатора ОГ и т.д.

Марганец, свинец, железо… Что предпочесть?

Несмотря на большой список выявленных эффективных антидетонаторов различного химического состава, в промышленных масштабах реализованы АД присадки только на основе трех химических элементов: свинца, марганца и железа. Это уже известный нам ТЭС и его ближайший «химический родственник» тетраметилсвинец (ТМС), циклопентадиенилтрикарбонил марганца (ЦТМ), метилциклопентадиенилтрикарбонил марганца (МЦТМ), дициклопентадиенил железа (ферроцен) и его алкильные производные.

ТЭС и ТМС под давлением возрастающих требований к экологической безопасности автотранспорта завершают свою «биографию» в истории науки и техники. В ряде развитых стран, в том числе и в России, применение в бензинах свинецсодержащих АД присадок запрещено, и эта тенденция постоянно расширяет свои географические границы.

Присадки на основе марганца применяются в высокооктановых бензинах в ограниченных масштабах, в основном из-за низкой допустимой концентрации (не более 17 мг марганца на 1 л бензина), что не позволяет им серьезно конкурировать в борьбе за ОЧ со спиртами и эфирами.

В середине 90-х годов прошлого века в производство автобензинов все более энергично стали внедряться эффективные и экологически безопасные АД присадки на основе ферроцена, и произошло это в России.

Развитию этого нового направления способствовал ряд факторов экологического, экономического и технического характера.

  1. В результате продолжительного периода интенсивного применения в стране этилированных бензинов, в городах и густонаселенных районах резко ухудшилась экологическая обстановка из-за отравления среды токсичными свинецсодержащими продуктами сгорания ТЭС. Кроме того, использование ТЭС, даже в ограниченном объеме товарных бензинов, тормозило оснащение новых марок отечественных автомобилей нейтрализаторами ОГ.
  2. Имеющихся в нефтеперерабатывающей промышленности технологических резервов для обеспечения необходимого уровня ДС бензинов, в случае запрета ТЭС, явно не хватало, учитывая растущие потребности в высокооктановых бензинах развивающегося автопарка страны.
  3. Накопленный объем результатов исследований и испытаний АД присадок на основе ферроцена и его производных свидетельствовал об их высоких эксплуатационных свойствах, экологической безопасности и положительном влиянии на эффективность работы нейтрализаторов ОГ бензиновых двигателей.
  4. В стране образовались свободные промышленные мощности производства ферроцена и его производных.

На основании указанных факторов, а также положительных межведомственных приемочных результатов испытаний в 1994 г. допущены к производству и применению бензины А-76 и Аи-93 с первой отечественной АД присадкой на основе гидроксиизопропилферроцена, получившей название ФК-4.

В дальнейшем разработано несколько присадок на основе других производных ферроцена, но далеко не все из них по результатам испытаний допущены к применению. Специалистам в области нефтепродуктообеспечения и эксплуатации автотранспорта перечень железосодержащих присадок, допущенных к применению в бензинах, был бы полезен, чтобы не использовать непроверенные присадки и подделки. Вот этот перечень: ФК-4 (ТУ 38.301-27-012-94), «ФеРоЗ» (ТУ-38.401-58-83-94), «Октан-максимум» (ТУ 6-00-05808008-002-96), «Феррада» (ТУ 38.401-58-186-97), «АПК» (ТУ 38.401-58-189-97), «МАФ» (ТУ 38.401-58-217-98), «SOA» (ТУ 0257-309-05808008-99), «КВ-мотор» (ТУ 0257-001-18419946-99).

Еще одна важная деталь. Все АД присадки на основе ферроцена должны содержаться в бензинах в концентрации не более 37 мг железа на 1 л, что определено требованиями технических условий на бензинах этого вида.

В случае превышения указанной концентрации возрастает склонность бензина к образованию отложений на электродах свечей зажигания, что снижает надежность их работы. Предельная концентрация железосодержащих присадок в бензине установлена на основании результатов большого объема стендовых, дорожных и эксплуатационных испытаний отечественных автомобилей и иномарок. Под пристальным вниманием специалистов автомобили проехали на железосодержащих бензинах сотни тысяч километров. В результате показано, что при этом не снизились надежность и параметры работы двигателей, зафиксировано уменьшение концентрации в ОГ токсичных компонентов: окиси углерода на 15-30 % и несгоревших углеводородов — в 1,2-2,8 раза. Однако в условиях функционирующих в стране многочисленных малотоннажных производств бензинов, основанных на смешении бензиновых компонентов и присадок, иногда допускают передозировку железосодержащих присадок с целью получения максимального АД эффекта от их применения. В результате бензин фактически не соответствует по качеству требованиям ТУ, а возможные в случае применения такого бензина неполадки в работе свечей зажигания целиком лежат на совести недобросовестных производителей. К сожалению, зафиксировав перебои в работе свечей зажигания, зачастую начинают обвинять во всех грехах «железо», забывая, что в пересоленном супе виновата не соль, а повар.

Объективности ради следует отметить, что попытки «потеснить» в бензине опасный свинец железом имели место и ранее. В Германии в 30-х годах прошлого века в противовес этилированному бензину начали выпускать под названием «моталин» бензин с железосодержащей присадкой на основе пентакарбонилжелеза (ПКЖ), но выявленный в результате повышенный износ двигателей заставил прекратить выпуск такого бензина. Причина неудачи заключалась в чрезвычайно высокой концентрации ПКЖ и его низких эксплуатационных свойствах, которые так и не удалось улучшить немецким химикам. Отечественным специалистам на основе результатов большого объема исследований и испытаний удалось избежать ошибок предшественников.

Как и все новое в науке и технике, применение в бензинах ферроценсодержащих присадок имеет своих сторонников и противников.

Одним из главных аргументов оппонентов является довод о том, что железосодержащие АД присадки не применяются нигде, кроме России, а значит, в этом есть еще не изученная и не понятная нам причина. В ответ можно привести десятки примеров разного подхода в нашей стране и за рубежом к решению одних и тех же технических проблем.

Например, после запрета в США в 1986 г. применения этилированных бензинов американские автомобилестроители столкнулись с серьезной проблемой повышенного износа седел впускных клапанов бензиновых двигателей. Следует отметить, что Америка шла к этому решению с 1970 г., то есть 16 лет, и тем не менее!

«Русский путь» железа

В России после перехода в 2002 г. исключительно на применение неэтилированного бензина (а сокращение использования в бензинах ТЭС началось у нас только в середине 90-х годов) такой проблемы не возникло. Положительную роль сыграло очередное русское ноу-хау, известное специалистам в области создания и испытания двигателей.

Несмотря на почти двадцатилетний период успешного и все более масштабного применения в отечественных бензинах железосодержащих присадок, исследования и испытания их продолжаются. На повестке дня стоит задача исследования возможных полезных свойств бензина с добавкой ферроцена, который является основой многих ценнейших кроветворных лекарств (например, ферроцерон), а также лекарств против железодефицитной анемии. Дело в том, что молекула ферроцена по своему строению похожа на молекулу гемоглобина, который также содержит железо и является одним из основных компонентов крови (около 15% от ее массы), выполняя роль переносчика кислорода воздуха из легких человека ко всем органам и тканям его тела.

Вообще, среди группы химических элементов, необходимых для роста, развития и репродуцирования человека (а таких всего восемь), железо стоит на первом месте. По содержанию в земной коре железо занимает третье место после кислорода и кремния.

Суточная потребность этого жизненно важного для человека элемента значительна и составляет для мужчин 10 мг, а для женщин почти в два раза больше — 18 мг. Может быть поэтому средняя продолжительность жизни у женщин в разных странах превышает данный показатель у мужчин на 10 и более лет.

Чтобы подтвердить гипотезу полезного влияния присадок на основе ферроцена в бензине на здоровье человека, необходимы длительные исследования.

Таким образом, в борьбе за прекращение производства и применения высокотоксичных и экологически опасных присадок на основе ТЭС наша страна продемонстрировала свой особенный «русский путь», призвав для вытеснения из бензина ядовитого элемента свинца жизнеутверждающий элемент железо, определивший в начале первого тысячелетия до нашей эры индустриальный путь развития земной цивилизации.

 

Святослав ЛЕБЕДЕВ

Литература:
1. Лернер М.О. Химические регуляторы горения моторных топлив — М: Химия, 1979.
2. Сачивко А.В., Твердохлебов В.П., Демьяненко Е.А., Поляков Б.В. Новые присадки к моторным топливам: технические и экологические аспекты// Российский химический журнал, №1-2, 1998, с. 176-185.
3. Буцкой Ю. Железный занавес для детонации// журнал «За рулем», № 6, 2000.
4. Андреев И.Л. Ноу-хау в бензобаке// журнал «Российская Федерация сегодня», № 17, 2001, с. 49-52.
5. Емельянов В.Е., Симоненко Л.С., Скворцов В.Н. Ферроцен — нетоксичный антидетонатор для автомобильных бензинов// журнал «Химия и технология топлив и масел», № 4, 2001, с. 6-8.

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here